SECOND EDITION

New color photographs and diagrams

JEREMY BLUM

EXPLORING ARDUINO° TOOLS AND TECHNIQUES

FOR ENGINEERING WIZARDRY

an debieet

Tools and Techniques for Engineering Wizardry

Second Edition

Jeremy Blum

WILEY

Contents at a Glance

Introduction xxv
PART I Arduino Engineering Basics 1 1 Getting Started and Understanding the Arduino Landscape 3
2 Digital Inputs, Outputs, and Pulse-Width Modulation
3 Interfacing with Analog Sensors 47
PART II Interfacing with Your Environment
5 Driving Stepper and Servo Motors
6 Making Sounds and Music 125
7 USB Serial Communication141
8 Emulating USB Devices
9 Shift Registers 183
PART III Communication Interfaces 199 10 The I ² C Bus 201
11 The SPI Bus and Third-Party Libraries
12 Interfacing with Liquid Crystal Displays
PART IV Digging Deeper and Combining Functions 273 13 Interrupts and Other Special Functions 275
14 Data Logging with SD Cards

xiv Contents

3	Interfacing with Analog Sensors	47
	Understanding Analog and Digital Signals	
	Comparing Analog and Digital Signals	
	Converting an Analog Signal to Digital	
	Reading Analog Sensors with the Arduino: analogRead()	
	Reading a Potentiometer	
	Using Analog Sensors	56
	Using Variable Resistors to Make Your Own Analog Sensors	60
	Using Resistive Voltage Dividers	
	Using Analog Inputs to Control Analog Outputs	64
	Summary	66
	The first of the Maxim Environment	67
	II Interfacing with Your Environment	
4	Using Transistors and Driving DC Motors	
	Driving DC Motors	70
	Handling High-Current Inductive Loads	71
	Using Transistors as Switches	72
	Using Protection Diodes	73
	Using a Secondary Power Source	74
	Wiring the Motor	74
	Controlling Motor Speed with PWM	76
	Using an H-Bridge to Control DC Motor Direction	78
	Building an H-Bridge Circuit	80
	Operating an H-Bridge Circuit	
	Building a Roving Robot	
	Choosing the Robot Parts	87
	Selecting a Motor and Gearbox	87
	Powering Your Robot	87
	Constructing the Robot	89
	Writing the Robot Software	
	Bringing It Together	96
	Summary	97

P

Contents XV

5	Driving Stepper and Servo Motors	99
	Driving Servo Motors	100
	Understanding the Difference between Continuous Rotation and Standard Servos.	
	Understanding Servo Control	
	Controlling a Servo	104
	Building a Sweeping Distance Sensor	
	Understanding and Driving Stepper Motors	
	How Bipolar Stepper Motors Work	
	Making Your Stepper Move	113
	Building a "One-Minute Chronograph"	117
	Wiring and Building the Chronograph	117
	Programming the Chronograph	
	Summary	
6	Making Sounds and Music	125
	Understanding How Speakers Work	
	The Properties of Sound	
	How a Speaker Produces Sound	
	Using <i>tone()</i> to Make Sounds	
	Including a Definition File	
	Wiring the Speaker	
	Making Sound Sequences	
	Using Arrays	
	Making Note and Duration Arrays.	
	Completing the Program	134
	Understanding the Limitations of the <i>tone()</i> Function	
	Building a Micro Piano	136
	Summary	
7	USB Serial Communication	141
	Understanding the Arduino's Serial Communication Capabilities	
	Arduino Boards with an Internal or External FTDI or Silicon Labs USB-to-Serial Converter	

xvi Contents

	Arduino Boards with a Secondary USB-Capable ATmega MCU Emulating a Serial Converter	
	Emulating a Serial Converter Arduino Boards with a Single USB-Capable MCU	.146
	Arduino Boards with USB-Host Capabilities	
	Listening to the Arduino	
	Using <i>print</i> Statements	
	Using Special Characters	
	Changing Data Type Representations	
	Talking to the Arduino	152
	Configuring the Arduino IDE's Serial Monitor to Send Command Strings	.152
	Reading Incoming Data from a Computer or Other Serial Device	.153
	Telling the Arduino to Echo Incoming Data	.153
	Understanding the Differences between Chars and Ints	.154
	Sending Single Characters to Control an LED	.156
	Sending Lists of Values to Control an RGB LED	
	Talking to a Desktop App	. 161
	Installing Processing	162
	Controlling a Processing Sketch from Your Arduino	.163
	Sending Data from Processing to Your Arduino	166
	Summary	169
8	Emulating USB Devices	474
	Emulating a Keyboard	
	Typing Data into the Computer Commanding Your Computer to Do Your Bidding	1/3
	Emulating a Mouse	177
	Summary	1/8
	Summary	182
)	Shift Registers	183
	Understanding Shift Registers	
	Sending Parallel and Serial Data	
	Working with the 74HC595 Shift Register	
	Understanding the Shift Register pin Functions	186
	Understanding How the Shift Register Works	

Contents xvii

	Shifting Serial Data from the Arduino	189
	Converting Between Binary and Decimal Formats	192
	Controlling Light Animations with a Shift Register	192
	Building a "Light Rider"	192
	Responding to Inputs with an LED Bar Graph	194
	Summary	197
PART III	Communication Interfaces	99
10 Th	ne I ² C Bus	201
	History of the I ² C Bus	202
	I ² C Hardware Design	203
	Communication Scheme and ID Numbers	203
	Hardware Requirements and Pull-Up Resistors	206
	Communicating with an I ² C Temperature Probe	208
	Setting Up the Hardware	208
	Referencing the Datasheet	210
	Writing the Software	212
	Combining Shift Registers, Serial Communication, and I ² C Communications	214
	Building the Hardware for a Temperature Monitoring System	214
	Modifying the Embedded Program	215
	Writing the Processing Sketch	218
	Summary	.221
11 ть	e SPI Bus and Third-Party Libraries	222
11.10		
	Overview of the SPI Bus.	
	SPI Hardware and Communication Design	
	Hardware Configuration.	
	Communication Scheme	
	Comparing SPI to I ² C and UART	
	Communicating with an SPI Accelerometer	
	What Is an Accelerometer?	
	Gathering Information from the Datasheet	
	Setting Up the Hardware	.233

xviii Contents

	Writing the Software	
	Installing the Adafruit Sensor Libraries	
	Leveraging the Library	
	Creating an Audiovisual Instrument Using a 3-Axis Accelerometer	
	Setting Up the Hardware	
	Modifying the Software	
	Summary	
12 Int	terfacing with Liquid Crystal Displays	247
	Setting Up the LCD	
	Using the LiquidCrystal Library to Write to the LCD	
	Adding Text to the Display	
	Creating Special Characters and Animations	
	Building a Personal Thermostat.	
	Setting Up the Hardware	
	Displaying Data on the LCD	
	Adjusting the Set Point with a Button	
	Adding an Audible Warning and a Fan	
	Bringing It All Together: The Complete Program	
	Taking This Project to the Next Level	
	Summary	
PART IV	Digging Deeper and Combining Functions	
	errupts and Other Special Functions	
	Using Hardware Interrupts	
	Knowing the Tradeoffs Between Polling and Interrupting	
	Ease of Implementation (Software).	
	Ease of Implementation (Hardware)	
	Multitasking.	
	Acquisition Accuracy	
	Understanding the Arduino Hardware Interrupt Capabilities	

Contents xix

Building and Testing a Hardware-Debounced Button Interrupt Circuit	279
Creating a Hardware-Debouncing Circuit	
Assembling the Complete Test Circuit	
Writing the Software	
Using Timer Interrupts	
Understanding Timer Interrupts	
Getting the Library	289
Executing Two Tasks Simultaneously(ish)	
Building an Interrupt-Driven Sound Machine	290
Sound Machine Hardware	291
Sound Machine Software	291
Summary	294
14 Data Logging with SD Cards	295
Getting Ready for Data Logging	
Formatting Data with CSV Files	297
Preparing an SD Card for Data Logging	297
Formatting Your SD Card Using a Windows PC	
Formatting Your SD Card Using Mac OS.	
Formatting Your SD Card Using Linux	
Interfacing the Arduino with an SD Card	
SD Card Shields	
SD Card SPI Interface	
Writing to an SD Card	
Reading from an SD Card	
Real-Time Clocks	
Understanding Real-Time Clocks	
Communicating with a Real-Time Clock	
Using the RTC Arduino Third-Party Library	
Using a Real-Time Clock	
Installing the RTC and SD Card Modules	
Updating the Software	

XX Contents

Connecting Your Smartphone to Your BTLE Transmitter	
Sending Commands from Your Phone over BTLE	
Parsing Command Strings	
Commanding Your BTLE Device with Natural Language	
Controlling an AC Lamp with Bluetooth	
How Your Phone "Pairs" to BTLE Devices	
Writing the Proximity Control Software	
Pairing Your Phone	
Pairing an Android Phone	
Pairing an iPhone	
Make Your Lamp React to Your Presence	
Summary	
The Fire date Cloud	200
7 Wi-Fi and the Cloud	
The Web, the Arduino, and You	
Networking Lingo	
The Internet vs. the World Wide Web vs. the Cloud	
IP Address	
Network Address Translation	
MAC Address	
HTML	
HTTP and HTTPS	
GET/POST	403
DHCP	403
DNS	403
Clients and Servers	403
Your Wi-Fi–Enabled Arduino	404
Controlling Your Arduino from the Web	404
Setting Up the I/O Control Hardware	404
Preparing the Arduino IDE for Use with the Feather Board	
Ensuring the Wi-Fi Library Is Matched to the Wi-Fi Module's Firmware .	
Checking the WINC1500's Firmware Version	408
Updating the WINC1500's Firmware	

xxii Contents

Ι

Writing an Arduino Server Sketch408
Connecting to the Network and Retrieving an IP Address via DHCP409
Writing the Code for a Bare-Minimum Web Server
Controlling Your Arduino from Inside and Outside Your Local Network423
Controlling Your Arduino over the Local Network
Using Port Forwarding to Control Your Arduino from Anywhere425
Interfacing with Web APIs427
Using a Weather API428
Creating an Account with the API Service Provider
Understanding How APIs Are Structured
JSON-Formatted Data and Your Arduino
Fetching and Parsing Weather Data Comparison 431
Getting the Local Temperature from the Web on Your Arduino
Completing the Live Temperature Display 440
Wiring up the LED Readout Display
Driving the Display with Temperature Data
Summary
ppendix A: Deciphering Datasheets and Schematics
ndex

Figure Credits

All images, icons, and marks as displayed in Figure 3-7 and Figure 10-3 are owned by Analog Devices, Inc. (ADI), copyright © 2019. All Rights Reserved. These images, icons, and marks are reproduced with permission by ADI. No unauthorized reproduction, distribution, or usage is permitted without ADI's written consent.

This book contains copyrighted material of Microchip Technology Incorporated replicated with permission. All rights reserved. No further replications may be made without Microchip Technology Inc.'s prior written consent.

Atmel, AVR, ICSP, and In-Circuit Serial Programming are trademarks or registered trademarks of Microchip Technology Inc.

Arm and Cortex are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the United States and/or elsewhere. The related technology may be protected by any or all of patents, copyrights, designs, and trade secrets.

Introduction

hen the first edition of this book came out in 2013, I opened it with the following greeting:

You have excellent timing. As I often like to say, "We're living in the future."

I think I backed myself into a corner with that introduction, because if 2013 was "the future," then I'm not quite sure what to call the present! The *far future*? The *future-future*? My point is, the march of progress has been swift, and the possibilities for what you can do with even a cursory knowledge of embedded electronics and software continue to expand every day.

Since the first edition of this book was released, electronics and software have continued to become increasingly accessible with every passing day. In 2013, I was hesitant to include a chapter about connecting your hardware projects to the internet because the process for doing so was still quite fussy. The "Internet of Things" (IoT) was just an emerging nerdy buzzword in 2013. Now, it's a key part of the global vernacular. It seems like every product for sale nowadays contains a microcontroller. Everything is "smart" and most of those things also feature phone or web connectivity. I bet you didn't think you'd be buying a Bluetooth-enabled toothbrush back when "Bluetooth" just referred to people talking to themselves through their wireless cellphone headsets.

Considering all this, I felt it was time to release a new edition of *Exploring Arduino*. This second edition expands upon everything that was covered in the first edition. It updates all the projects with new challenges and details, clarifies questions that people had from the first edition, and adds a plethora of new content, including a lot more details on wireless connectivity, new Arduino hardware, changes to the Arduino ecosystem and software, and more.

Why Arduino?

With the tools available to you today, many of which you'll learn about in this book, you have the opportunity and the ability to bend the physical world to your whim. Until very recently, it has not been possible for someone to pick up a microcontroller and use it to control their world within minutes. A *microcontroller* is a programmable integrated circuit (IC) that gives you the power to define the operation of complex mechanical, electrical, and software systems using relatively simple commands. The possibilities are endless, and the Arduino microcontroller platform will become your new favorite tool as you explore the world of electronics, programming, human-computer interaction,

xxvi Introduction

art, control systems, and more. Throughout the course of this book, you'll use the Arduino to do everything from detecting motion to creating wireless control systems to communicating over the internet.

Whether you are completely new to any kind of engineering or are a seasoned veteran looking to get started with embedded systems design, the Arduino is a great place to start. Are you looking for a general reference for Arduino development? This book is perfect for you, too. It walks you through a number of separate projects, but you'll also find it easy to return to the book for code snippets, best practices, system schematics, and more. The electrical engineering, systems design, and programming practices that you'll learn while reading this book are widely applicable beyond the Arduino platform and will prepare you to take on an array of engineering projects, whether they use the Arduino or some other platform.

Who This Book Is For

This book is for Arduino enthusiasts of all experience levels. Chapters build upon each other, utilizing concepts and project components from previous chapters to develop more complex ideas. But don't worry. Whenever you face new, complex ideas, a cross-reference reminds you where you first encountered any relevant building-block concepts so that you can easily refresh your memory.

This book assumes that you have little or no previous experience working with programming or electrical engineering. Using feedback from readers of the first edition of this book, I've taken special care to be very detailed in my explanation of the more confusing topics you may encounter. To effectively support readers of various experience levels, the book features several optional sections and *sidebars*, or short excerpts, that explain a particular concept in greater detail. Although these sidebars are not necessary for you to gain a good understanding of how to use the Arduino, they do provide a closer look at technical topics for the more curious reader.

What You'll Learn in This Book

This book is not a recipe book. If you want to follow step-by-step instructions that tell you exactly how to build a particular project without actually explaining why you are doing what you are doing, this book is not for you. You can think of this book as an introduction to electrical engineering, computer science, product design, and high-level thinking using the Arduino as a vehicle to help you experience these concepts in a hands-on manner.

When building hardware components of the Arduino projects demonstrated in this book, you'll learn not just how to wire things together, but also how to read schematics,

why particular parts are used for particular functions, and how to read datasheets that will allow you to choose appropriate parts to build your own projects. When writing software, I provide complete program code, but you will first be stepped through several iterative processes to create the final program. This will help to reinforce specific program functions, good code-formatting practices, and algorithmic understanding.

This book will teach physics concepts, algorithms, digital design principles, and Arduino-specific programming concepts. It is my hope that working through the projects in this book will not just make you a well-versed Arduino developer, but also give you the skills you need to develop more-complex electrical systems, and to pursue engineering endeavors in other fields, and with different platforms.

Features Used in This Book

The following features and icons are used in this book to help draw your attention to some of the most important or useful information in the book:

WARNING Be sure to take heed when you see one of these asides. They appear when particular steps could cause damage to your electronics if performed incorrectly.

TIP These asides contain quick hints about how to perform the task at hand more easily and effectively.

NOTE These asides contain additional information that may be of importance to you, including links to videos and online material that will make it easier to follow along with the development of a particular project.

SAMPLE HEADING

These asides go into additional depth about the current topic or a related topic.

Getting the Parts

In preparing the projects outlined in this book, I've taken special care to use components that are readily available through a variety of retailers, both in the United States and internationally. I've also partnered with Adafruit (adafruit.com), a popular retailer

xxviii Introduction

of hobbyist electrical components. You can purchase all the components required for completing the projects in this book from Adafruit. A convenient listing of Adafruit parts for each chapter is available at exploringarduino.com/kits.

At the beginning of each chapter, you'll find a detailed list of parts that you need to complete that chapter—all of these parts are available from many sources. The companion website for this book, www.wiley.com/go/exploringarduino2e, also provides links to multiple sources where you can find the parts for each chapter.

What You'll Need

In addition to the actual parts that you'll use to build your Arduino projects, there are a few other tools and materials that you'll need on your Arduino adventures. Most importantly, you'll need a computer that is compatible with the Arduino integrated development environment (IDE) (Mac OS X 10.7 Lion or newer, Windows XP or later, or a Linux distro). I will provide instructions for all operating systems when warranted.

Arduino now also has an entirely web-based editor, but this book will generally focus on the desktop IDE. All the instructions for the desktop software generally apply to the online IDE as well. The first version of this book was read by people all over the world, representing a wide range of internet speeds and reliability. To ensure that Arduino remains easily accessible to all, I'll mostly provide instructions that use the offline IDE, as constant internet access isn't always an option for everybody.

You may also want some additional tools that will be used throughout the book to debug and assemble hardware. These tools are not only necessary to complete the projects in this book. As you develop your electrical engineering skillset, they will come in handy for other projects, too. I recommend the following:

- A soldering iron and solder (Note: A few shields and microcontroller boards used in the final chapters of this book may be sold with some soldering required—this usually involves easy soldering of thru-hole pins to a circuit board.)
- A multimeter (This will be useful for debugging concepts within this book, but is not required.)
- A set of small screwdrivers
- Tweezers
- Wire cutters and wire strippers
- A hot glue gun
- A magnifying glass (Electronics are small, and sometimes it's necessary to read the tiny, laser-etched markings on integrated circuits in order to look up their datasheets online.)